Peer-reviewed literature

Late Pleistocene history of turbidite sedimentation in a submarine canyon off the northern Great Barrier Reef, Australia

Authors: Webster, J.M., Beaman, R.J., Puga-Bernabéu, A., Ludman, D., Renema, W., Wust, R.A.J., George, N.P.J., Reimer, P.J., Jacobsen, G.E., Moss, P.

Year: 2012

Publication: Palaeogeography, Palaeoclimatology, Palaeoecology 331-332, 75-89. doi: 10.1016/j.palaeo.2012.02.034

Abstract

Cores from slopes east of the Great Barrier Reef (GBR) challenge traditional models for sedimentation on tropical mixed siliciclastic-carbonate margins. However, satisfactory explanations of sediment accumulation on this archetypal margin that include both hemipelagic and turbidite sedimentation remain elusive, as submarine canyons and their role in delivering coarse-grained turbidite deposits, are poorly understood.

Towards addressing this problem we investigated the shelf and canyon system bordering the northern Ribbon Reefs and reconstructed the history of turbidite deposition since the Late Pleistocene.

High-resolution bathymetric and seismic data show a large paleo-channel system that crosses the shelf before connecting with the canyons via the inter-reef passages between the Ribbon Reefs. High-resolution bathymetry of the canyon axis reveals a complex and active system of channels, sand waves, and local submarine landslides.

Multi-proxy examination of three cores from down the axis of the canyon system reveals 18 turbidites and debrites, interlayerd with hemipelagic muds, that are derived from a mix of shallow and deep sources. Twenty radiocarbon ages indicate that siliciclastic-dominated and mixed turbidites only occur prior to 31 ka during Marine Isotope Stage (MIS) 3, while carbonate-dominated turbidites are well established by 11 ka in MIS1 until as recently as 1.2 ka.

The apparent lack of siliciclastic-dominated turbidites and presence of only a few carbonate-dominated turbidites during the MIS2 lowstand is not consistent with generic models of margin sedimentation but might also reflect a gap in the turbidite record.

These data suggest that turbidite sedimentation in the Ribbon Reef canyons, probably reflects the complex relationship between the prolonged period (>25 ka) of MIS3 millennial sea level changes and local factors such as the shelf, inter-reef passage depth, canyon morphology and different sediment sources. On this basis we predict that the spatial and temporal patterns of turbidite sedimentation could vary considerably along the length of the GBR margin.

Download PDF