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Tasmantid morphologies fall into four distinct categories: i) rugged seamounts constructed via repeated fissure eruptions along S f
crosscutting volcanic rift zones (VRZs) (6a)); ii) shield seamounts with shallow slopes and dispersed cinder cones (6b)); iii) elon- — adient is remarkably con.
gated, terraced seamounts with subaerially eroded peaks (6¢) & d)) and iv) conical seamounts characterised by summit calderas "‘ e 50mom gtant 1 the affected ;’ ector ‘ HMMMWWWWWWW

and smooth flanks (6e) & f)). The chain exhibits low rates of mass wasting, highly variable VRZ orientation and fluctuating edifice A 75 Ve Ly ’ * o : e) Curvature of the bathym- e . R U A U 00000 0000 00000 _ Seamount Infill I

volume, with morphology varying dramatically between seamounts separated by as little as 10 km. Plotting multibeam bathym- /s S\ ; ZZ AN f i, W e , . etryis 0in this sector. Taken Wavelength (m) Easting (m) o Water Depth

— 6810000m

etry against tectonic context shows a clear link between overall morphology and seamount position relative to ridge structure. i :\ i 7a2000m - TR - together these observations Figure 4. Gravity reduction over Queensland & Britannia seamounts. a) Bathymetry. b) Combined basement-seafloor interface anom- | Basement

are diagnostic of mass wast- aly (sediment density = 2000 kg/m?; basement density = 2700 kg/m?3). ¢) Free-air anomaly. d) Spectral coherence between the bou- .. s
, , Ing deposits, with the high guer anomaly and the bathymetry for a range of basement densities from 2300 kg/m? to 3300 kg/m? in 100 kg/m? increments. ) Com- _pg 1= & . . e e ] ersom Backstrip Moho
7110k00m v & runout distance to headscar parison of gravity anomalies and topography where sediment density = 2000 kg/m? and basement density = 2700 kg/m?. f) Bouguer 154.8"  155.1°  1554°  1557°  156.0°  156.3° Flexed Moho

EENESS . L —— 68500 690wom 635000m  7000uam 705om width ratio suggesting a de- anomaly calculated for the basement density with lowest long-wavelength coherence (2700 kg/m?) and a sediment density of 2000 kg/ —— — ' ' ' ' ' ' ' ' ' '

000 o — ‘ bris avalanche mechanism m3. The high mean Bouguer value results from a slab correction that has been made to correct for the removal of topographic means a00 a2s 250 —500 —400 —300 —200 —100 0 100 200 300 400 500

Bathymetry (m) -40 -85 -3 -25 -20  -15 -0.05 0.00 0.05 . . _ . . _ _ ) Distance (km
Backscatter (pval) Curvature (™) vs. a slump or debris flow. mean prior to FFT analysis. Clear highs of 30-50 mGal occur over the centres of Queensland, North Britannia and South Britannia. Bouguer Anomaly (mGal) (km)

Bouguer Anomaly Seafloor Anomaly

| i — — Bathymetry Basement Anomaly
I\ )
M‘“M“’ H | \! — — Basement Free-Air Anomaly [~

Combined Anomaly o’ | — 6840000m De nse CO re

7115000m —

6 a) NE -SW trending volcanic ridge o M Mt 1A W 2 main volcanic centres

%00 Volcanic crater
=

Steep gullied flanks

-3000 1500
Bathymetry (m)

| - Structural Orientations 93)x =0 b) x =0.05 ¢) X =01 d)x =0.15 rose ransiom  me. 6 Conclusions
155'40E 155'50'E | 156°00'E ‘ e N T > ummo AR . . , . , . | . | . , . , cross-transform me-
=’ - . pith blocks up 0000000000000000000 0000000000000000000Q0 000000000000000000030 : chanical coupling on
u olcanic rift zone = ' : ) 0000000000000000000 0000000000000000000¢a 0000000000000000000¢ o ]
0000000000000000000 00000000000000000000 00000000000000000066& principal stress orien-
0000000000000000000 0000000000000000000d 00000000000000006666 ] o
0000000000000000000 00000000000000000666 00000000000000066666 tations (modified after

0000000000000000000 000000000000086686HGG
0000000000000000000 Q &6 Bem1etaL,2002))(=

009093 00a200802a909 mechanical  coupling The modest rates of mass wasting revealed by slope analysis combined with the prevalence of dense
parameter, OC = inside cores indicated by gravity signatures and lithospheric modelling suggest that subsurface intrusion, rather
00000000dJ

) corner, IC = outside than sub-aqueous eruption, was the dominant magmatic growth mechanism.
00000000d 000000000

000000000 000000004 O corner, red = ridge axis,
00000000q 00000000¢

IGO0 23390 black = transform fault. Low overall T_and the >20Ma time separation between seamount emplacement and spreading cessation
060000000 060000000 Toe/ Oevnn 19 the ratio of suggest deep intra-lithospheric faulting must have accompanied spreading in order to allow Tasmantid
magmas to exploit and align with pre-existing structural weaknesses.

125+

VRZs, faults and long axes of faults were delineated using bathymetry data with consistent orientations emerging amongst seamounts em-
placed in specific tectonic settings (7 & 8). Seamounts located at inside corners have major trends oblique to spreading trends implying that 100-
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Morphology varies dramatically between seamounts, even those separated by <10km distance.
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