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e Tasmantid morphologies fall e Tectonic setting exerts major control on slope characteristics: conical seamounts with elevated slope gradients but lower inter-sector variance occur off-axis and
into four distinct categories: at outside corners; rugged seamounts with low slope gradient but high inter-sector variability occur at inside corners.

e The relatively low slope variance and elevated backscatter on the lower sections of the edifices indicate that large mass-wasting events are rare. This 1s consistent
with minimal shallow deformation and may reflect modest eruption rate with a high intrusive-to-extrusive magmatic budget (Ramalho et al., 2013).
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= extinct ridge axis, solid black line = transform fault, and sediment-seamount interfaces to investigate gravity signals related to deeper density interfaces. ' '

_ 8 Sl ical seamount. (b) Cato, a shield seamount. (c) Britannia, a terraced wasting deposit with reduced mean slope gradient (b) and low backscatter (e). Slope
dashed black = fracture zone. Bathymetry derived from ~ -6000  -5000 -4000 -3000 -2000 -1000 O Calculations assume that seamount topography is uncompensated, i.e. the lithosphere is infinitely rigid. - seamount; (i) basal and (ii) upper, subaerially-eroded slopes. (d) Strad-  gradient is fairly constant (c) so bathymetric curvature (e) is ~ 0. The run-out distance:

s T S e _‘ ] : . — 7560000m . . . .
GBR100 dataset (Beaman 2010). Bathymetry (m) The reduction density of a seamount refers to the input seamount density that minimises spectral e g B broke, a rugged seamount. headscar aspect ratio suggests a debris avalanche mechanism (Mitchell et al., 2002).

coherence between calculated Bouguer anomalies and the bathymetry.

20-50 mGal Bouguer highs over many seamounts, coupled with reduction densities up to ~3100 kg m~, 22

Q Structural Orientations suggest extensive intra-basement intrusion of primary magmas (cf. Contreras-Reyes et al., 2010). o | T 3 o i g R @ Gravi ty Modellin g to Determine Lithos P heric Stren gt h
Low reduction densities over Cato and Wreck are consistent with both seamounts being emplaced on o . ; - 7530000

continental basement and significant fractionation of parent magmas (Hammer ef al. 1990). - W _ | _ |
Table 1. Reduction density Inclusion of large sediment loads and extensive intra-basement intrusion of mafic magmas is required to achieve acceptable fits to observed gravity anomalies.

Figure 5. Linear feature orientation vs. tectonic setting. (a) Stradbroke: (i) trends oblique-to-spreading; (ii) inside-corner setting.
(b) S & N Recorder: (i) S Recorder: volcanic trends parallel to Recorder Fracture Zone and (iii) fracture zone setting (ii) N Re-
corder has ridge-parallel features and (iii) off-axis setting. (c) N Fraser: (i) trends ridge-parallel or subparallel to fracture zones; (ii)
ocean-continent boundary setting. Red = major VRZs, blue = minor VRZs and black = faults. IC = inside corner, OC = outside corner. Seamount

Models assume a finite-strength lithosphere and that the seamounts constitute loads, potentially associated with crustal roots and flexural moats.

Reduction Density Mean of Error (i.e. seamount density, p__,, | | | | &> There 1s no observable elastic thickness vs. age relationship along the chain.
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average coherence between | 1 e A 7560000 Seamounts emplaced at inside corners, fracture zones and on highly-extended continental basement have the lowest elastic thicknesses suggesting that structural

Stradbroke . gravity and bathymetry) for | S Y - O g inheritance, not age, 1s the dominant control on lithospheric strength.
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Figure 6. Linear feature orientations of all seamounts. (a) Axial ridges (red) and fracture zones (black). (b) Off-axis sea- (b) Best-fitting crustal model for Stradbrokeseamount from process-ori- 40 o

-100 100 200 225
Free—Air Anomaly (mGal) Bouguer Anomaly (mGal)

N
o
|

Elastic Thickness (km)

W
o
o
al)

N
o
o
(

% Off—Axis
% Fracture Zone
1 Y% Inside Corner

Coherence

o

Topography (m
3

Gravity Anomaly (m

— Water-Sediment Interface --- Basement Interface

North Fraser

L
o
o

Cato

) : ] ted it d fl delli Val indicate d iti K 3) =500 -400 -300 -200 -100 0 100 200 300 400 500
mounts. (c) Fracture zone seamounts. (d) Inside corner seamounts. (e) Outside corner seamounts. (f) Continental seamounts. ented gravity and tiexure modelling. values Indicate densilies (kg m~). Distance (km)
TTS = Total Tectonic Subsidence.

N Ridge Axis & FZs Off— Axis Eracture Zone Alignments suggest deep faulting of the oceanic lithosphere allowing channelisation of magma along pre-existing structures despite emplacement post-dating active extension by >20 Ma.

Dominance of the tectonic signal points to low melt production, implying that the Tasmantid “plume” was a relatively weak melting anomaly.

Seamounts located at or adjacent to ridge-transform intersections have dominant trends oblique to spreading, implying strong mechanical coupling across the transforms. 0 Concl u sions

The high degree of mechanical coupling is consistent with slow Tasman Sea spreading rates and low rates of melt production.

. The modest rates of mass wasting revealed by slope analysis, combined with the prevalence of dense cores indicated by gravity signatures and lithospheric

Figure /. Effect O_f cross-trar)sf(_)rm modelling, suggest that subsurface intrusion, rather than sub-aqueous eruption, was the dominant magmatic growth mechanism.
mechanical coupling on principal

stress orientations (modified after . Low overall Te and the >20 Ma time separation between seamount emplacement and spreading cessation suggest deep intra-lithospheric faulting must have

Behn etal., 2002). Focal mechanisms accompanied spreading in order to allow Tasmantid magmas to exploit and align with pre-existing structural weaknesses.

show optimal, calculated fault plane o . . o , , , , : . .
solutions at 4 km depth for differing . Slow rate of magma supply, as indicated by the dominance of tectonic controls, high intrusive:extrusive ratios and scarcity of large mass-wasting deposits, points

degrees of mechanical coupling. x = to a relatively weak Tasmantid melting anomaly.

mechanical coupling, OC =inside cor- Linher , h , lut £ th , . » hol , o i) Tack of
ner, IC = outside corner, red = ridge . Structural inheritance dominates the magmatic evolution of the Tasmantids as demonstrated by: 1) dependence of morphology on tectonic setting; i1) lack of a

axis. black = transform fault. T /o Te-age relationship and i11) strong alignment of volcanic features with principal stress directions predicted for the Tasman Sea ridge system.
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X (km X (km 100m (10 ka at half-spreading rate of References: Beaman, 2010, MTSRF Project 2.5i.1a Final Report, pp. 13 & Appendix 1; Behn et al., 2002, Geophys. Res. Lett., 29(24), 2207; Cohen et al., 2013, Tectonics,
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. The strong dependence of intraplate magmatic fabric on extinct ridge structure demonstrates the importance of understanding tectonic inheritance and its
influence on magmatic systems in both continental and oceanic settings.
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